Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 75
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Am J Bot ; : e16298, 2024 Mar 03.
Artículo en Inglés | MEDLINE | ID: mdl-38433501

RESUMEN

PREMISE: Theory predicts that mixed ploidy populations should be short-lived due to strong fitness disadvantages for the rare ploidy. However, mixed ploidy populations are common, suggesting that the fitness costs for rare ploidies are counterbalanced by ecological benefits that emerge when rare. We investigated whether differences in ecological interactions with soil microbes help to maintain a tetraploid-hexaploid population of Larrea tridentata (creosote bush) in the Sonoran Desert, California, United States, where prior work documented ploidy-specific root-associated microbes. METHODS: We used a plant-soil feedback (PSF) experiment to test whether host-specific soil microbes can alter the outcomes of intraploidy vs. interploidy competition. Host-specific soil microbes can build up over time; thus, distance from a host plant can affect the fitness of nearby plants. RESULTS: Seedlings grown in soils from near plants of a different ploidy produced greater biomass relative to seedlings grown in soils from near plants of the same ploidy. Moreover, seedlings grown in soils from near plants of a different ploidy produced more biomass than those grown in soils that were farther from plants of a different ploidy. These results suggest that the ecological consequences of PSF may facilitate the persistence of mixed ploidy populations. CONCLUSIONS: This is the first evidence, to our knowledge, that is consistent with plant-soil microbe feedback as a viable mechanism to maintain the coexistence of multiple ploidy levels in a single population.

2.
Nature ; 628(8007): 342-348, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38538790

RESUMEN

Climate change could pose an urgent threat to pollinators, with critical ecological and economic consequences. However, for most insect pollinator species, we lack the long-term data and mechanistic evidence that are necessary to identify climate-driven declines and predict future trends. Here we document 16 years of abundance patterns for a hyper-diverse bee assemblage1 in a warming and drying region2, link bee declines with experimentally determined heat and desiccation tolerances, and use climate sensitivity models to project bee communities into the future. Aridity strongly predicted bee abundance for 71% of 665 bee populations (species × ecosystem combinations). Bee taxa that best tolerated heat and desiccation increased the most over time. Models forecasted declines for 46% of species and predicted more homogeneous communities dominated by drought-tolerant taxa, even while total bee abundance may remain unchanged. Such community reordering could reduce pollination services, because diverse bee assemblages typically maximize pollination for plant communities3. Larger-bodied bees also dominated under intermediate to high aridity, identifying body size as a valuable trait for understanding how climate-driven shifts in bee communities influence pollination4. We provide evidence that climate change directly threatens bee diversity, indicating that bee conservation efforts should account for the stress of aridity on bee physiology.


Asunto(s)
Abejas , Cambio Climático , Desecación , Ecosistema , Calor , Animales , Abejas/anatomía & histología , Abejas/clasificación , Abejas/fisiología , Biodiversidad , Tamaño Corporal/fisiología , Calentamiento Global , Modelos Biológicos , Plantas , Polinización/fisiología , Masculino , Femenino
3.
Mycologia ; 115(6): 749-767, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37874894

RESUMEN

Diverse fungi colonize plant roots worldwide and include species from many orders of the phylum Ascomycota. These fungi include taxa with dark septate hyphae that colonize grass roots and may modulate plant responses to stress. We describe a novel group of fungal isolates and evaluate their effects on the grass Bouteloua gracilis in vitro. We isolated fungi from roots of six native grasses from 24 sites spanning replicated latitudinal gradients in the south-central US grasslands and characterized isolates phylogenetically using a genome analysis. We analyzed 14 isolates representing a novel clade within the family Montagnulaceae (order Pleosporales), here typified as Pleoardoris graminearum, closely related to the genera Didymocrea and Bimuria. This novel species produces asexual, light brown pycnidium-like conidioma, hyaline hyphae, and chlamydospores when cultured on quinoa and kiwicha agar. To evaluate its effects on B. gracilis, seeds were inoculated with one of three isolates (DS304, DS334, and DS1613) and incubated at 25 C for 20 d. We also tested the effect of volatile organic compounds (VOCs) produced by the same isolates on B. gracilis root and stem lengths. Isolates had variable effects on plant growth. One isolate increased B. gracilis root length up to 34% compared with uninoculated controls. VOCs produced by two isolates increased root and stem lengths (P < 0.05) compared with controls. Internal transcribed spacer ITS2 metabarcode data revealed that P. graminearum is distributed across a wide range of sites in North America (22 of 24 sites sampled), and its relative abundance is influenced by host species identity and latitude. Host species identity and site were the most important factors determining P. graminearum relative abundance in drought experiments at the Extreme Drought in the Grasslands Experiment (EDGE) sites. Variable responses of B. gracilis to inoculation highlight the potential importance of nonmycorrhizal root-associated fungi on plant survival in arid ecosystems.


Asunto(s)
Ascomicetos , Ecosistema , Raíces de Plantas/microbiología , Hifa , Plantas
4.
Proc Natl Acad Sci U S A ; 120(35): e2305050120, 2023 Aug 29.
Artículo en Inglés | MEDLINE | ID: mdl-37603760

RESUMEN

Primary productivity response to climatic drivers varies temporally, indicating state-dependent interactions between climate and productivity. Previous studies primarily employed equation-based approaches to clarify this relationship, ignoring the state-dependent nature of ecological dynamics. Here, using 40 y of climate and productivity data from 48 grassland sites across Mongolia, we applied an equation-free, nonlinear time-series analysis to reveal sensitivity patterns of productivity to climate change and variability and clarify underlying mechanisms. We showed that productivity responded positively to annual precipitation in mesic regions but negatively in arid regions, with the opposite pattern observed for annual mean temperature. Furthermore, productivity responded negatively to decreasing annual aridity that integrated precipitation and temperature across Mongolia. Productivity responded negatively to interannual variability in precipitation and aridity in mesic regions but positively in arid regions. Overall, interannual temperature variability enhanced productivity. These response patterns are largely unrecognized; however, two mechanisms are inferable. First, time-delayed climate effects modify annual productivity responses to annual climate conditions. Notably, our results suggest that the sensitivity of annual productivity to increasing annual precipitation and decreasing annual aridity can even be negative when the negative time-delayed effects of annual precipitation and aridity on productivity prevail across time. Second, the proportion of plant species resistant to water and temperature stresses at a site determines the sensitivity of productivity to climate variability. Thus, we highlight the importance of nonlinear, state-dependent sensitivity of productivity to climate change and variability, accurately forecasting potential biosphere feedback to the climate system.

5.
Oecologia ; 202(3): 481-495, 2023 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-37368022

RESUMEN

Multi-factor experiments suggest that interactions among environmental changes commonly influence biodiversity and community composition. However, most field experiments manipulate only single factors. Soil food webs are critical to ecosystem health and may be particularly sensitive to interactions among environmental changes that include soil warming, eutrophication, and altered precipitation. Here, we asked how environmental changes interacted to alter soil nematode communities in a northern Chihuahuan Desert grassland. Factorial manipulations of nitrogen, winter rainfall, and nighttime warming matched predictions for regional environmental change. Warming reduced nematode diversity by 25% and genus-level richness by 32%, but declines dissipated with additional winter rain, suggesting that warming effects occurred via drying. Interactions between precipitation and nitrogen also altered nematode community composition, but only weakly affected total nematode abundance, indicating that most change involved reordering of species abundances. Specifically, under ambient precipitation, nitrogen fertilizer reduced bacterivores by 68% and herbivores by 73%, but did not affect fungivores. In contrast, under winter rain addition, nitrogen fertilization increased bacterivores by 95%, did not affect herbivores, and doubled fungivore abundance. Rain can reduce soil nitrogen availability and increase turnover in the microbial loop, potentially promoting the recovery of nematode populations overwhelmed by nitrogen eutrophication. Nematode communities were not tightly coupled to plant community composition and may instead track microbes, including biocrusts or decomposers. Our results highlight the importance of interactions among environmental change stressors for shaping the composition and function of soil food webs in drylands.


Asunto(s)
Nematodos , Suelo , Animales , Ecosistema , Cadena Alimentaria , Nitrógeno , Microbiología del Suelo
6.
Oecologia ; 201(4): 1067-1077, 2023 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-36941448

RESUMEN

Anthropogenic nitrogen (N) enrichment can have complex effects on plant communities. In low-nutrient, primary successional systems such as sand dunes, N enrichment may alter the trajectory of plant community assembly or the dominance of foundational, ecosystem-engineering plants. Predicting the consequences of N enrichment may be complicated by plant interactions with microbial symbionts because increases in a limiting resource, such as N, could alter the costs and benefits of symbiosis. To evaluate the direct and interactive effects of microbial symbiosis and N addition on plant succession, we established a long-term field experiment in Michigan, USA, manipulating the presence of the symbiotic fungal endophyte Epichloë amarillans in Ammophila breviligulata, a dominant ecosystem-engineering dune grass species. From 2016 to 2020, we implemented N fertilization treatments (control, low, high) in a subset of the long-term experiment. N addition suppressed the accumulation of plant diversity over time mainly by reducing species richness of colonizing plants. However, this suppression occurred only when the endophyte was present in Ammophila. Although Epichloë enhanced Ammophila tiller density over time, N addition did not strongly interact with Epichloë symbiosis to influence vegetative growth of Ammophila. Instead, N addition directly altered plant community composition by increasing the abundance of efficient colonizers, especially C4 grasses. In conclusion, hidden microbial symbionts can alter the consequences of N enrichment on plant primary succession.


Asunto(s)
Ecosistema , Simbiosis , Animales , Plantas , Ambiente , Endófitos , Poaceae
7.
Mycologia ; 115(2): 165-177, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-36857605

RESUMEN

Characterizing the diverse, root-associated fungi in mine wastes can accelerate the development of bioremediation strategies to stabilize heavy metals. Ascomycota fungi are well known for their mutualistic associations with plant roots and, separately, for roles in the accumulation of toxic compounds from the environment, such as heavy metals. We sampled soils and cultured root-associated fungi from blue grama grass (Bouteloua gracilis) collected from lands with a history of uranium (U) mining and contrasted against communities in nearby, off-mine sites. Plant root-associated fungal communities from mine sites were lower in taxonomic richness and diversity than root fungi from paired, off-mine sites. We assessed potential functional consequences of unique mine-associated soil microbial communities using plant bioassays, which revealed that plants grown in mine soils in the greenhouse had significantly lower germination, survival, and less total biomass than plants grown in off-mine soils but did not alter allocation patterns to roots versus shoots. We identified candidate culturable root-associated Ascomycota taxa for bioremediation and increased understanding of the biological impacts of heavy metals on microbial communities and plant growth.


Asunto(s)
Ascomicetos , Uranio , Suelo , New Mexico , Hongos , Plantas/microbiología , Poaceae , Raíces de Plantas/microbiología
8.
Bioscience ; 72(9): 889-907, 2022 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-36034512

RESUMEN

Long-term observations and experiments in diverse drylands reveal how ecosystems and services are responding to climate change. To develop generalities about climate change impacts at dryland sites, we compared broadscale patterns in climate and synthesized primary production responses among the eight terrestrial, nonforested sites of the United States Long-Term Ecological Research (US LTER) Network located in temperate (Southwest and Midwest) and polar (Arctic and Antarctic) regions. All sites experienced warming in recent decades, whereas drought varied regionally with multidecadal phases. Multiple years of wet or dry conditions had larger effects than single years on primary production. Droughts, floods, and wildfires altered resource availability and restructured plant communities, with greater impacts on primary production than warming alone. During severe regional droughts, air pollution from wildfire and dust events peaked. Studies at US LTER drylands over more than 40 years demonstrate reciprocal links and feedbacks among dryland ecosystems, climate-driven disturbance events, and climate change.

9.
Ecology ; 103(9): e3744, 2022 09.
Artículo en Inglés | MEDLINE | ID: mdl-35522227

RESUMEN

Future climates will alter the frequency and size of rain events in drylands, potentially affecting soil microbes that generate carbon feedbacks to climate, but field tests are rare. Topsoils in drylands are commonly colonized by biological soil crusts (biocrusts), photosynthesis-based communities that provide services ranging from soil fertilization to stabilization against erosion. We quantified responses of biocrust microbial communities to 12 years of altered rainfall regimes, with 60 mm of additional rain per year delivered either as small (5 mm) weekly rains or large (20 mm) monthly rains during the summer monsoon season. Rain addition promoted microbial diversity, suppressed the dominant cyanobacterium, Microcoleus vaginatus, and enhanced nitrogen-fixing taxa, but did not consistently increase microbial biomass. The addition of many small rain events increased microbial biomass, whereas few, large events did not. These results alter the physiological paradigm that biocrusts are most limited by the amount of rainfall and instead predict that regimes enriched in small rain events will boost cyanobacterial biocrusts and enhance their beneficial services to drylands.


Asunto(s)
Microbiota , Suelo , Biomasa , Ecosistema , Lluvia , Microbiología del Suelo
10.
Mycologia ; 114(2): 254-269, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35394886

RESUMEN

Darksidea is a common genus of dark septate fungi-a group of ascomycetes in semiarid regions. A survey reported D. alpha and a distinct Darksidea lineage as abundant root-associated fungi of foundational grasses in North America. Fungi were isolated, and metabarcode data were obtained from sequencing of fungal communities of grass roots in the United States. During a comprehensive investigation of the Darksidea lineage, we carried out polyphasic taxonomy, genomic characterization, and identification of host associations, geographic distribution, and environmental factors that correlate with its abundance. For molecular phylogenetic studies, seven loci were sequenced. Isolates of the distinct Darksidea had variable colony morphology. No sexual reproductive structures were detected, but chlamydospores were frequently observed. The complete genome of an isolate of the lineage was sequenced with a size of 52.3 Mb including 14 707 gene models. Based on morphology and phylogenetic analysis, we propose the novel species Darksidea phi, sp. nov. Metabarcoding data showed that D. phi distribution and relative abundance were not limited to semiarid regions or a specific grass species, suggesting low host specificity among graminoids. This new species, D. phi, expands the distribution of the genus in the United States beyond prior reports from arid regions.


Asunto(s)
Ascomicetos , Raíces de Plantas , Clima Desértico , Endófitos , Filogenia , Raíces de Plantas/microbiología , Poaceae
11.
Ecology ; 103(4): e3656, 2022 04.
Artículo en Inglés | MEDLINE | ID: mdl-35132623

RESUMEN

Interactions between plants and soil microbes influence plant nutrient transformations, including nitrogen (N) fixation, nutrient mineralization, and resource exchanges through fungal networks. Physical disturbances to soils can disrupt soil microbes and associated processes that support plant and microbial productivity. In low resource drylands, biological soil crusts ("biocrusts") occupy surface soils and house key autotrophic and diazotrophic bacteria, non-vascular plants, or lichens. Interactions among biocrusts, plants, and fungal networks between them are hypothesized to drive carbon and nutrient dynamics; however, comparisons across ecosystems are needed to generalize how soil disturbances alter microbial communities and their contributions to N pools and transformations. To evaluate linkages among plants, fungi, and biocrusts, we disturbed all unvegetated surfaces with human foot trampling twice yearly from 2013-2019 in dry conditions in cyanobacteria-dominated biocrusts in the Chihuahuan Desert grassland and shrubland ecosystems. After 5 years, disturbance decreased the abundances of cyanobacteria (especially Microcoleus steenstrupii clade) and N-fixers (Scytonema sp., and Schizothrix sp.) by >77% and chlorophyll a by up to 55% but, conversely, increased soil fungal abundance by 50% compared with controls. Responses of root-associated fungi differed between the two dominant plant species and ecosystem types, with a maximum of 80% more aseptate hyphae in disturbed than in control plots. Although disturbance did not affect 15 N tracer transfer from biocrusts to the dominant grass, Bouteloua eriopoda, disturbance increased available soil N by 65% in the shrubland, and decreased leaf N of B. eriopoda by up to 16%, suggesting that, although rapid N transfer during peak production was not affected by disturbance, over the long-term plant nutrient content was disrupted. Altogether, the shrubland may be more resilient to detrimental changes due to disturbance than grassland, and these results demonstrated that disturbances to soil microbial communities have the potential to cause substantial changes in N pools by reducing and reordering biocrust taxa.


Asunto(s)
Cianobacterias , Microbiota , Clorofila A , Ecosistema , Hongos , Humanos , Hojas de la Planta , Poaceae , Suelo , Microbiología del Suelo
12.
ISME Commun ; 2(1): 25, 2022 Mar 17.
Artículo en Inglés | MEDLINE | ID: mdl-37938686

RESUMEN

Fungal symbionts can buffer plants from environmental extremes and may affect host capacities to acclimate, adapt, or redistribute under environmental change; however, the distributions of fungal symbionts along abiotic gradients are poorly described. Fungal mutualists should be the most beneficial in abiotically stressful environments, and the structure of networks of plant-fungal interactions likely shift along gradients, even when fungal community composition does not track environmental stress. We sampled 634 unique combinations of fungal endophytes and mycorrhizal fungi, grass species identities, and sampling locations from 66 sites across six replicate altitudinal gradients in the western Colorado Rocky Mountains. The diversity and composition of leaf endophytic, root endophytic, and arbuscular mycorrhizal (AM) fungal guilds and the overall abundance of fungal functional groups (pathogens, saprotrophs, mutualists) tracked grass host identity more closely than elevation. Network structures of root endophytes become more nested and less specialized at higher elevations, but network structures of other fungal guilds did not vary with elevation. Overall, grass species identity had overriding influence on the diversity and composition of above- and belowground fungal endophytes and AM fungi, despite large environmental variation. Therefore, in our system climate change may rarely directly affect fungal symbionts. Instead, fungal symbiont distributions will most likely track the range dynamics of host grasses.

13.
ACS Earth Space Chem ; 5(6): 1278-1287, 2021 Jun 17.
Artículo en Inglés | MEDLINE | ID: mdl-34308092

RESUMEN

We integrated microscopy, spectroscopy, culturing and molecular biology, and aqueous chemistry techniques to evaluate arsenic (As) accumulation in hydroponically grown Schizachyrium scoparium inoculated with endophytic fungi. Schizachyrium scoparium grows in historically contaminated sediment in the Cheyenne River Watershed and was used for laboratory experiments with As(V) ranging from 0 to 2.5 mg L-1 at circumneutral pH. Arsenic accumulation in regional plants has been a community concern for several decades, yet mechanisms affecting As accumulation in plants associated with endophytic fungi remain poorly understood. Colonization of roots by endophytic fungi supported better external and vascular cellular structure, increased biomass production, increased root lengths and increased P uptake, compared to noninoculated plants (p value <0.05). After exposure to As(V), an 80% decrease of As was detected in solution and accumulated mainly in the roots (0.82-13.44 mg kg-1) of noninoculated plants. Endophytic fungi mediated intracellular uptake into root cells and translocation of As. Electron microprobe X-ray mapping analyses detected Ca-P and Mg-P minerals with As on the root surface of exposed plants, suggesting that these minerals could lead to As adsorption on the root surface through surface complexation or coprecipitation. Our findings provide new insights regarding biological and physical-chemical processes affecting As accumulation in plants for risk assessment applications and bioremediation strategies.

14.
Glob Chang Biol ; 27(20): 5225-5237, 2021 10.
Artículo en Inglés | MEDLINE | ID: mdl-34260799

RESUMEN

Interannual variability in precipitation has increased globally as climate warming intensifies. The increased variability impacts both terrestrial plant production and carbon (C) sequestration. However, mechanisms driving these changes are largely unknown. Here, we examined mechanisms underlying the response of aboveground net primary production (ANPP) to interannual precipitation variability in global drylands with mean annual precipitation (MAP) <500 mm year-1 , using a combined approach of data synthesis and process-based modeling. We found a hump-shaped response of ANPP to precipitation variability along the MAP gradient. The response was positive when MAP < ~300 mm year-1 and negative when MAP was higher than this threshold, with a positive peak at 140 mm year-1 . Transpiration and subsoil water content mirrored the response of ANPP to precipitation variability; evaporation responded negatively and water loss through runoff and drainage responded positively to precipitation variability. Mean annual temperature, soil type, and plant physiological traits all altered the magnitude but not the pattern of the response of ANPP to precipitation variability along the MAP gradient. By extrapolating to global drylands (<500 mm year-1  MAP), we estimated that ANPP would increase by 15.2 ± 6.0 Tg C year-1 in arid and hyper-arid lands and decrease by 2.1 ± 0.5 Tg C year-1 in dry sub-humid lands under future changes in interannual precipitation variability. Thus, increases in precipitation variability will enhance primary production in many drylands in the future.


Asunto(s)
Clima , Lluvia , Cambio Climático , Ecosistema , Plantas , Suelo
15.
Ecol Lett ; 24(9): 1930-1942, 2021 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-34174002

RESUMEN

Although rarely experimentally tested, biotic interactions have long been hypothesised to limit low-elevation range boundaries of species. We tested the effects of herbivory on three alpine-restricted plant species by transplanting plants below (novel), at the edge (limit), or in the centre (core) of their current elevational range and factorially fencing-out above- and belowground mammals. Herbivore damage was greater in range limit and novel habitats than in range cores. Exclosures increased plant biomass and reproduction more in novel habitats than in range cores, suggesting demographic costs of novel interactions with herbivores. We then used demographic models to project population growth rates, which increased 5-20% more under herbivore exclosure at range limit and novel sites than in core habitats. Our results identify mammalian herbivores as key drivers of the low-elevation range limits of alpine plants and indicate that upward encroachment of herbivores could trigger local extinctions by depressing plant population growth.


Asunto(s)
Herbivoria , Plantas , Animales , Biomasa , Ecosistema , Mamíferos
16.
Glob Chang Biol ; 27(17): 4005-4023, 2021 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-33942467

RESUMEN

Regional long-term monitoring can enhance the detection of biodiversity declines associated with climate change, improving future projections by reducing reliance on space-for-time substitution and increasing scalability. Rodents are diverse and important consumers in drylands, regions defined by the scarcity of water that cover 45% of Earth's land surface and face increasingly drier and more variable climates. We analyzed abundance data for 22 rodent species across grassland, shrubland, ecotone, and woodland ecosystems in the southwestern USA. Two time series (1995-2006 and 2004-2013) coincided with phases of the Pacific Decadal Oscillation (PDO), which influences drought in southwestern North America. Regionally, rodent species diversity declined 20%-35%, with greater losses during the later time period. Abundance also declined regionally, but only during 2004-2013, with losses of 5% of animals captured. During the first time series (wetter climate), plant productivity outranked climate variables as the best regional predictor of rodent abundance for 70% of taxa, whereas during the second period (drier climate), climate best explained variation in abundance for 60% of taxa. Temporal dynamics in diversity and abundance differed spatially among ecosystems, with the largest declines in woodlands and shrublands of central New Mexico and Colorado. Which species were winners or losers under increasing drought and amplified interannual variability in drought depended on ecosystem type and the phase of the PDO. Fewer taxa were significant winners (18%) than losers (30%) under drought, but the identities of winners and losers differed among ecosystems for 70% of taxa. Our results suggest that the sensitivities of rodent species to climate contributed to regional declines in diversity and abundance during 1995-2013. Whether these changes portend future declines in drought-sensitive consumers in the southwestern USA will depend on the climate during the next major PDO cycle.


Asunto(s)
Ecosistema , Roedores , Animales , Biodiversidad , Cambio Climático , América del Norte
17.
Bioscience ; 70(11): 1027-1035, 2020 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-33273892

RESUMEN

Transmission of information has benefitted from a breathtaking level of innovation and change over the past 20 years; however, instructional methods within colleges and universities have been slow to change. In the article, we present a novel framework to structure conversations that encourage innovation, change, and improvement in our system of higher education, in general, and our system of biology education, specifically. In particular, we propose that a conceptual model based on evolutionary landscapes in which fitness is replaced by educational effectiveness would encourage educational improvement by helping to visualize the multidimensional nature of education and learning, acknowledge the complexity and dynamism of the educational landscape, encourage collaboration, and stimulate experimental thinking about how new approaches and methodology could take various fields associated with learning, to more universal fitness optima. The framework also would encourage development and implementation of new techniques and persistence through less efficient or effective valleys of death.

18.
Ecol Evol ; 10(13): 6385-6394, 2020 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-32724520

RESUMEN

Patterns of insect herbivory may follow predictable geographical gradients, with greater herbivory at low latitudes. However, biogeographic studies of insect herbivory often do not account for multiple abiotic factors (e.g., precipitation and soil nutrients) that could underlie gradients. We tested for latitudinal clines in insect herbivory as well as climatic, edaphic, and trait-based drivers of herbivory. We quantified herbivory on five dominant grass species over 23 sites across the Great Plains, USA. We examined the importance of climate, edaphic factors, and traits as correlates of herbivory. Herbivory increased at low latitudes when all grass species were analyzed together and for two grass species individually, while two other grasses trended in this direction. Higher precipitation was related to more herbivory for two species but less herbivory for a different species, while higher specific root length was related to more herbivory for one species and less herbivory for a different species. Taken together, results highlight that climate and trait-based correlates of herbivory can be highly contextual and species-specific. Patterns of insect herbivory on dominant grasses support the hypothesis that herbivory increases toward lower latitudes, though weakly, and indicates that climate change may have species-specific effects on plant-herbivore interactions.

19.
Ann Bot ; 125(6): 981-991, 2020 05 13.
Artículo en Inglés | MEDLINE | ID: mdl-32010946

RESUMEN

BACKGROUND AND AIMS: The processes that maintain variation in the prevalence of symbioses within host populations are not well understood. While the fitness benefits of symbiosis have clearly been shown to drive changes in symbiont prevalence, the rate of transmission has been less well studied. Many grasses host symbiotic fungi (Epichloë spp.), which can be transmitted vertically to seeds or horizontally via spores. These symbionts may protect plants against herbivores by producing alkaloids or by increasing tolerance to damage. Therefore, herbivory may be a key ecological factor that alters symbiont prevalence within host populations by affecting either symbiont benefits to host fitness or the symbiont transmission rate. Here, we addressed the following questions: Does symbiont presence modulate plant tolerance to herbivory? Does folivory increase symbiont vertical transmission to seeds or hyphal density in seedlings? Do plants with symbiont horizontal transmission have lower rates of vertical transmission than plants lacking horizontal transmission? METHODS: We studied the grass Poa autumnalis and its symbiotic fungi in the genus Epichloë. We measured plant fitness (survival, growth, reproduction) and symbiont transmission to seeds following simulated folivory in a 3-year common garden experiment and surveyed natural populations that varied in mode of symbiont transmission. KEY RESULTS: Poa autumnalis hosted two Epichloë taxa, an undescribed vertically transmitted Epichloë sp. PauTG-1 and E. typhina subsp. poae with both vertical and horizontal transmission. Simulated folivory reduced plant survival, but endophyte presence increased tolerance to damage and boosted fitness. Folivory increased vertical transmission and hyphal density within seedlings, suggesting induced protection for progeny of damaged plants. Across natural populations, the prevalence of vertical transmission did not correlate with symbiont prevalence or differ with mode of transmission. CONCLUSIONS: Herbivory not only mediated the reproductive fitness benefits of symbiosis, but also promoted symbiosis prevalence by increasing vertical transmission of the fungus to the next generation. Our results reveal a new mechanism by which herbivores could influence the prevalence of microbial symbionts in host populations.


Asunto(s)
Epichloe , Poa , Endófitos , Herbivoria , Poaceae , Simbiosis
20.
Sci Rep ; 10(1): 708, 2020 01 20.
Artículo en Inglés | MEDLINE | ID: mdl-31959812

RESUMEN

Drylands worldwide are experiencing ecosystem state transitions: the expansion of some ecosystem types at the expense of others. Bees in drylands are particularly abundant and diverse, with potential for large compositional differences and seasonal turnover across ecotones. To better understand how future ecosystem state transitions may influence bees, we compared bee assemblages and their seasonality among sites at the Sevilleta National Wildlife Refuge (NM, USA) that represent three dryland ecosystem types (and two ecotones) of the southwestern U.S. (Plains grassland, Chihuahuan Desert grassland, and Chihuahuan Desert shrubland). Using passive traps, we caught bees during two-week intervals from March-October, 2002-2014. The resulting dataset included 302 bee species and 56 genera. Bee abundance, composition, and diversity differed among ecosystems, indicating that future state transitions could alter bee assemblage composition in our system. We found strong seasonal bee species turnover, suggesting that bee phenological shifts may accompany state transitions. Common species drove the observed trends, and both specialist and generalist bee species were indicators of ecosystem types or months; these species could be sentinels of community-wide responses to future shifts. Our work suggests that predicting the consequences of global change for bee assemblages requires accounting for both within-year and among-ecosystem variation.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...